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Note 

On the Problem of Unstable Pivots in the 

Incomplete LU-Conjugate Gradient Method* 

In Ref. [ 1 ] the point was raised that in incomplete Cholesky decompositions pivots 
(Lii in Eq.(7b) of Ref. [I]) may arise which are < 0. Similarly, in incomplete LU 
decompositions pivots (Uii in Appendix A of Ref. [ 11) may arise which are = 0. In 
either case this leads to a breakdown of the algorithms unless something is done to 
“fix” these “bad” pivots. In Ref. [ 1 ] it was suggested that if in the course of an 
incomplete Cholesky decomposition one comes up with Lii < 0, one should set 

(i-l) 

Lii= C lLi,jl+ jfj ILjil 
.i= 1 .i=(i+ I) 

thus assuring diagonal dominance of the ith row and column of L. This has worked 
quite well in practice. In [ I] it was also suggested that if in the course of an incom- 
plete LU decomposition one comes up with Uii = 0, “simply set Uii to a nonzero 
value and go on with the algorithm.” This is too vague to be very satisfactory and in 
what follows we shall derive a quantitative theory to determine: 

(1) Exactly how small must the pivot be before we alter it? Obviously on a 
computer of given accuracy there is some pivot value which is small enough to make 
the algorithm go unstable but is not yet a hard zero. 

(2) If a pivot needs to be “fixed,” what value should we set it to so as to get 
the best possible approximate inverse? 

We show that for the special case of complete LU decompositions of tridiagonal 
matrices our pivot fixing prescription will always work, and we derive an error bound 
on j(Lvij -A,]. In the case of complete LU decompositions of dense matrices we 
present a variety of numerical examples which indicate the method works quite well. 

It shall be assumed in what follows that we are dealing with a floating-point 
computer where the mantissa is stored with I binary digits so the accuracy with 
which any number can be stored is 1 part in 2’. 

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore 
Laboratory under Contract W-7405-ENG-48. 

114 
0021.9991/80/130114-10$02.00/O 



UNSTABLE PIVOTS IN THE LU-CONJUGATE GRADIENT 115 

1. BASIC THEORY 

Consider first complete L U decomposition. 
We first note the theorem of Wilkinson ]2] which states that if one performs an 

LU decomposition of a matrix A with exact arithmetic except for an error which one 
makes in computing one element Ljj(i >j), then all elements of the error matrix 
E = A - LU will be zero except Eii. To see this we note that even if an error was 
made in computing some element L,, any later elements L,, or U,, satisfy 

UllLkl = A,, - c Lkn Unl ?Z<l 
or 

u,, = A,, - z L,, vi,,, 

so even if L, enters into the summation on the right-hand side of these equations and 
has the wrong value, L,, or U,, will be altered in just such a way as to make (LU),, 
exactly equal to A,,. Similarly, if we make an error only in U, (i <j), then only Eii 
will be nonzero. Thus in exact arithmetic an error in computing one L, or U, may 
cause later elements of L or U to change but later elements of (LU) will be unaf- 
fected. 

Now consider the effect of altering a pivot in LU decomposition. We take 

Uii=Aii- x LijlJii-Si=Dii-6i, 
.i< i 

where di is our “fix” that alters the ith pivot away from its unstable value, and oii = 
Aii - xjci L, Uji is the unfixed pivot. By Wilkinson’s theorem the sole effect of this 
on the error matrix in exact arithmetic is to introduce one nonzero element, 

Eii = +di, 

into E = A - LU. What is the effect on round-off error in the rest of the decom- 
position? First, all the elements of L in the ith column become 

Uii 
= SjJ( Oii - Si), j>i 

where 

Sji = Aji - ~ Ljk Uki. 
k<i 
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(Note that lZji is independent of ai since Lli(oii - Si) is a constant independent of the 
choice of S,.) Now consider the round-off error in the calculation of any subsequent 
L or U element which depends on Lli. We have 

and 

q/n = A jn - Lji ui, - C L,jk uk, 3 n>j, kcj, kfi, j,n>i. 
k 

Therefore the contribution from round-off error to Ej, due to the Lli term is given 
by 

Ej, = *Lji Ui, 2 -t 

= *sji ui, 2-t/( oii - S,), j, n > i. 

To proceed further we need a definition of what constitutes the best LU decom- 
position. We define the best pivot fix, di, to be the one that minimizes the maximum 
of all the b,-dependent contributions to the error matrix E. These Bi-dependent error 
contributions are to Eii, which has an error contribution ai and to all Ejn (with 
j, n > i) which have error contributions Sji Vi,, 2-‘/(oii - Si). If we set 

and 

then the maximum error contribution will be 

max(l6,1, 2- ‘ai~Jl Dii - di I). 

The value of ~5~ which minimizes this is 

6, = - sign(Oii)((Dii/2)* + 2-‘~~,~)*‘* - (Oii/2)) 

or 

Uii = Dij - di = (8,,/2) + sign(Dii)((Oii/2)* + 2-tci~i)“2. 

For ease of computation we approximate this by 

uii = o(f9 pii,* > 2-‘a,/+ 
sign(Oii)(2-tai~i)1’2, (O,,)’ < 2-‘oipi. 



UNSTABLE PIVOTS IN THE LU-CONJUGATE GRADIENT 117 

Thus our prescription for LU decomposition is as follows: 

(1) As we compute the ith row of U we find 

(2) As we compute the ith column of L (but before dividing by the ith pivot) 
we find 

Ui = max 1 Sjil. 
i>i 

(3) If (Uii)’ > 2-‘a,/$, we leave the ith pivot (Vii) unchanged. If 
(Lrii)’ < 2-‘aipi, we set the ith pivot (the new Uii) = sign(Uii)(2-‘ai,i)“2. 

(4) We divide all the Sji (j > i) by the new Uii to get the ith column of L. 

For incomplete LU decompositions the arguments and the resulting prescriptions 
are exactly the same except only elements within the sparsity pattern chosen are 
calculated, used, and stored. 

For complete LU decompositions one may ask if this prescription will always 
work. We have shown that with our pivot prescription the error in any element of 
(LU) is less than 

M,ax (2-‘a,,,)“*. 

Therefore the prescription will work as long as ui and ,ui are not very large. 
For the case of tridiagonal matrices which is of great practical importance to the 

computational physicist, our method will always work because for this case 
u~=A~+,.~ andpi=Ai.i+,. The errors in (LU)i+,,i and (LU)i i+, are zero since 

and 
CLu)i+ I,i = Li+l,i uii = Mi+ l,J”ii> uii, 

The error in (LU)ii is 

Eii < (2-s7ipi)1’* = 2-“*(~Ai+l,4i+l~)“*. 

Thus the error in the diagonal elements of (LU) will always be less than 2-“2 
times the gemetric mean of the off-diagonal elements. 

In the general case, earlier‘pivot shifts can affect later ui and ,q and cause them to 
grow. For example, consider the N-dimensional nonsingular matrix (for which I 
thank my reviewer). 

A,= 1, i >j and j= 1, 2, 3 ,..., (N- 1) 

Ai,= 1, i = 1, 2,..., (N- 1) 

A,=0 otherwise. 
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The first N - 1 pivots of this matrix are all bad. Our pivot prescription leads to the 
following series of pivots if we take sign(O) = +l, 

u,, = z-‘/2, 

uii = u(i- I)Ci- 1) ((l/u(i-l)(i 1)) - 1)“2 

and 

(Ui,J’2 = 2”2 Uii 

so Uii + l/2 from below. If we take sign(O) = -1 we get 

u,, = 2-‘12, 

‘ii= uCi-l,CiLl, C1 - (1/u(i-l)(i--l))“2’ 

So Uii + --oo. Thus in the general case if the matrix is artfully enough arranged 
cumulative growth of the oipi is possible. Typically though, cumulative growth does 
not seem to happen as is shown in Example 4 of Section II. 

One can protect against the possibility of cumulative growth of pivot error by 
keeping a count of how many pivots had to be changed while decomposing a given 
matrix and printing a warning message if more than a few pivots were changed. 

We have chosen our pivot shifts so as to minimize the elements of 

E=A-LU. 

Given that E is small, what error bounds can be put on the error in the solution X of 
AX= Y, due to A # LU. 

Let X, = (LU)-’ Y= (A -E)-’ Y. Then the error in X, 

X-X,=X-(A-E)m’Y 

=(I-(A-E)-‘A)x=(A-E)-‘(A-E-A)X 

=-(A-E)-‘EX. 

now let /IX/I = (\’ Xf)‘12, and let (IA I( be the subordinate norm 

IIA II = ~~PWXI~/~IX~I) 

Then 

Ilx-x,ll=lI(A--E)-‘EXll 
< II@ - W ’ Eli llxll 
< II@ -- E) - ’ II IIEII IIXII 
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IIX-~Allll~ll G IlEll II@ -W’ll 
= (IiE tl/llA - Ell>K, 

where K is the condition number = ](A - E ]( ]](A - E))’ I]. Typically in real problems 
we have tried (see Section II) we find 

IIEII - 2p”2 IIA IO 

so 

II& - xll/ljxll < 2-"'K. 

Of course this is quite a pessimistic estimate since in most cases X will not happen 
to be the largest eigenvalue of E and the smallest eigenvalue of A - E. 

Note that the total error in X will be given by [3] [A -E + (6L) U + L(W) + 
(&)(6U)]X, = Y, whose 6L and 6U come from round-off error during the solve, and 
6L - 2-‘L, 6U - 2-‘U. Since our pivot shifts tend to prevent large growth in L and 
U and thus in 6L and 6U, round-off errors in the solve also tend to be decreased. 

II. NUMERICAL RESULTS 

We tested our new prescription on four matrices whose complete LU decom- 
positions (without pivoting) are totally unstable. For each matrix, complete LU 
decomposition without pivoting but with our new pivot prescription was tried. 

EXAMPLE 1. Ai,i+l = -Ai+l,i = 1 and all other elements = 0. If the dimension N 
is even, the matrix is nonsingular, while if N is odd, it is singular. We took N = 1000. 
Since the determinant of every odd-dimensional principal minor is zero, every other 
pivot is bad and LU decomposition (without pivoting) blows up immediately. On the 
CDC 7600 (t = 48 binary digit mantissa) we performed the complete LU decom- 
position using our modified pivot prescription. We then calculated 

A-LU=E, 

and 

I-(LU)-‘A=E2. 

The largest elements of E, and E, had absolute values of z 2-24. 

EXAMPLE 2. 

A,= 1, i+j<N+ 1, 
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and 
A i,i = 0, i+j>N+ 1, 

where N is the dimension and we used N = 20. A is nonsingular but all its principal 
minors except for A itself and the 1 x 1 principal minor are singular. Therefore LU 
decomposition is totally unstable but with our modified prescription we again obtain 
an LU decomposition which gives an E, and E, the largest elements of which have 
absolute values z 2 - 24. 

EXAMPLE 3. 

A = B - al, 

where Bii = 2, Bi,i+, = Bi+ ,,i = -1, and all other elements of B are zero. The eigen- 
values of B are 

Ai = 4 sin*(zj/(2N + 2)), j = 1, 2 ,..., N, 

where N is the dimension. We tried three different matrices of this type with 
N = 1000 and a = 4 sin*(z/M), where M= 5,20, and 100. Then the ith principal 
minor is singular for i = $2 - 1; n = 1,2,3 ,..., 200 if M= 5, i = 10n - 1; 
n = 1) 2, 3 )..., 100 if M = 20, i = 50~ - 1; n = 1,2,3 ,..., 20 if M = 100. Thus every 
fifth (M= 5) 10th (M= 20) or 50th (M= 100) pivot is bad and regular LU decom- 
position blows up. Our prescription produced LU decompositions such that the 
largest elements of E, and E, had absolute values z 2-24. 

EXAMPLE 4. A was a 25 x 25 matrix whose elements were independent random 
numbers evenly distributed between -1 and tl. Then A6,6, A,,,,,, A,S,tSr A,8.,K, 
A 21.219 and A24,24 were shifted so as to make the sixth, 12th, 15th, l&h, 2 lst, and 
24th principal minors singular. One hundred random matrices each with six bad 
pivots were generated in this way. LU decomposition of each of these 100 matrices is 
totally unstable but LU decomposition with our modified prescription worked very 
well for all 100 matrices. For each matrix let E, and e2 be the largest element of E, 
and E, respectively, i.e.: 

and 

E, = max IE,ijl 
i.i 

c2 = max / E,,I. 
i,i 

Then the average over all 100 matrices of E, was 

F, = 5.5 x lo-‘, 
and the same average for E, was 
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The maximum over all 100 matrices of E, was 

E'p = 3.7 x lomh 

and the same maximum for s2 was 

&;M= 1.8 x 10-4. 

Thus, in general, with our modified pivot prescription the elements of L and U do not 
seem to grow cumulatively and only in very special cases such as that presented in 
Section I are we likely to encounter this problem. 

Thus on all four test problems our modified prescription was able to take matrices 
whose regular LU decomposition (without pivoting) was completely unstable and 
produce an approximate LU decomposition such that on the average (LU)- ' A = I 
and LU = A to 24 binary digit accuracy on a 48 binary digit machine, and in the 
worst case (Example 4-worst of 100 matrices) (LU)- ' A = Z to 4 decimal place 
accuracy and LU = A to 6 place accuracy. 

III. ADDITIONAL APPLICATIONS 

Our experience with the four test problems suggests that, in addition to its intended 
application in incomplete factorization schemes, our pivot prescription might be a 
very viable alternative to pivoting in complete LU decomposition algorithms. 
Complete LU decomposition with our modified pivot prescription (and no 
permutations of rows or columns) followed by conjugate gradient if needed (i.e., if 
any pivots required modification) to further improve the answer has many advantages 
over the usual pivoting schemes such as: 

(1) In the sparse matrix case pivoting usually causes many more elements 
which were zero in the original matrix to fill in and become nonzero in L and U than 
would have been the case if there had been no permutations of rows or columns. In 
our method we suffer from none of this additional fill in. 

Furthermore, various very effective minimal storage schemes (such as nested 
dissection) for Gauss elimination with sparse matrices have so far only been 
applicable to positive definite symmetric matrices because for more general matrices 
pivoting was required. Our modified pivot prescription would make these methods 
applicable to any matrices with the appropriate sparsity patterns. 

(2) LU decomposition without pivoting vectorizes very well and Fong and 
Jordan 141 have shown that it can go at super vector speeds on the Cray 1 computer. 
However, permuting rows and columns does not vectorize well and so our modified 
pivot method, which already entails much less work than pivoting in scalar 
computing, will have an even greater advantage on vector machines. 

(3) Computational experience shows that in many production code 
applications of LU decomposition most of the matrices produced do not have “bad” 
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pivots and so, with conventional methods, either most of the time a lot of unnecessary 
permuting of rows and columns is being done when just as good results would have 
been obtained from LU decomposition without pivoting, or else nothing at all is done 
about bad pivots in which case the code occasionally blows up. It is only the 
occasional matrix with “bad” pivots that needs some special attention and our 
method does very little extra work and when a “bad” pivot shows up, it keeps the 
code from crashing. 

It will now be shown that if we do an exact LU decomposition of some matrix A4 
except that we shift (“fix”) p of the pivots, and if we follow our ZU decomposition 
with conjugate gradient iterations, then we will get the exact answer in (2p + 1) 
iterations. 

If pivots i(j), j = 1, 2,...,p have been shifted by an amount ditil, then 

where ei is the unit column vector whose ith component is 1 while all other 
components are 0. We then use conjugate gradient to solve 

Mx=y, 

but in the form 

(L ‘MU- ‘)( Ux) = (L - ‘y) = NZ = W, 

where 

J;. = L ~ ‘eiu, , 

g; = erti, Up ‘. 

The conjugate gradient algorithm for nonsymmetric matrices converges in r iterations 
if NTN has only r distinct eigenvalues. 

Now 

+ 5 6iWBi(k) g/(fi’f,> &YkT. 
k.i= I 
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Consider the linear subspace V spanned by f, ,f, ,..., f,, g,, g, ,..., gP, and v the linear 
subspace of all vectors orthogonal to V. Then if x E p, NTNx = x, so N’N is 
nontrivial only on the 2p-dimensional linear subspace V and so N“N can have at 
most (2~ + 1) distinct eigenvalues. If we take as our initial guess vector 
-yO = (LU)-’ y, then our initial error vector (6z), = U(x, -Mm ‘y) lies entirely within 
V and so conjugate gradient sets the exact answer in (2~) iterations. 

This suggests that conjugate gradient is a good choice for an iterative scheme to 
follow complete LU decomposition with pivot shifting to “fix” unstable pivots. I wish 
to thank Gene Golub for bringing this point to my attention. 

IV. A MORE EFFICIENT FORM FOR THE 
INCOMPLETE LU-CONJUGATE GRADIENT ALGORITHM 

The algorithm given in Ref. 11, Appendix A, Eqs. (9’ak(9’e)], may be made 
computationally more efficient by the substitution pi(old) = (U’U)- ’ pi(new). This 
gives the more efficient form of the algorihtm: 

‘o=pAXo and po=AT(LL’)-’ ro, 

a, = Cri, CLLT)-’ ri> 

(Pi, (U’WPiY 

xitl =X; + ai(UTU)-‘pil 

ritl = ri - UiA(UTU)-‘pi, 

b,= Vi+lr (LLT’ Tit,) 
I (ri, (LL’)-’ ri) ’ 

Pit1 =A’(LLT)-’ rit, + bipi, i = 0, 1, 2 ,... . 

(9’4 

P’b) 
P’c) 

(9’4 

(9’4 
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